USACO 2014 December Silver

Problem 1: Piggyback

Piggyback

Bessie and her sister Elsie graze in different fields during the day, and in the evening they both want to walk back to the barn to rest. Being clever bovines, they come up with a plan to minimize the total amount of energy they both spend while walking.

Bessie spends B units of energy when walking from a field to an adjacent field, and Elsie spends E units of energy when she walks to an adjacent field. However, if Bessie and Elsie are together in the same field, Bessie can carry Elsie on her shoulders and both can move to an adjacent field while spending only P units of energy (where P might be considerably less than B+E, the amount Bessie and Elsie would have spent individually walking to the adjacent field). If P is very small, the most energy-efficient solution may involve Bessie and Elsie traveling to a common meeting field, then traveling together piggyback for the rest of the journey to the barn. Of course, if P is large, it may still make the most sense for Bessie and Elsie to travel separately. On a side note, Bessie and Elsie are both unhappy with the term “piggyback”, as they don’t see why the pigs on the farm should deserve all the credit for this remarkable form of transportation.

Given B, E, and P, as well as the layout of the farm, please compute the minimum amount of energy required for Bessie and Elsie to reach the barn.

INPUT: (file piggyback.in)

The first line of input contains the positive integers B, E, P, N, and M. All of these are at most 40,000. B, E, and P are described above. N is the number of fields in the farm (numbered 1..N, where N >= 3), and M is the number of connections between fields. Bessie and Elsie start in fields 1 and 2, respectively. The barn resides in field N.

The next M lines in the input each describe a connection between a pair of different fields, specified by the integer indices of the two fields. Connections are bi-directional. It is always possible to travel from field 1 to field N, and field 2 to field N, along a series of such connections.

SAMPLE INPUT:

4 4 5 8 8
1 4
2 3
3 4
4 7
2 5
5 6
6 8
7 8

OUTPUT: (file piggyback.out)

A single integer specifying the minimum amount of energy Bessie and Elsie collectively need to spend to reach the barn. In the example shown here, Bessie travels from 1 to 4 and Elsie travels from 2 to 3 to 4. Then, they travel together from 4 to 7 to 8.

SAMPLE OUTPUT:

22

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import java.io.*;
import java.util.*;

public class Piggyback {


    class Node {
        int value;
        int distance;
        Node(int v, int d) {
            value = v;
            distance = d;
        }
    }

    LinkedList<Integer>[] m_graph;

    int m_size;

    Piggyback(int size) {
        m_size = size;
        m_graph = new LinkedList[size];

        for (int i = 0; i < m_size; i++) {
            m_graph[i] = new LinkedList<Integer>();
        }
    }

    void addEdge(int i, int j) {
        m_graph[i].add(j);
        m_graph[j].add(i);
    }

    int[] distance(int start) {
        int[] values = new int[m_size + 1];

        Queue<Node> myQueue = new LinkedList<Node>();
        myQueue.add(new Node(start, 0));
        Map<Integer, Boolean> visited = new HashMap<Integer, Boolean>();

        visited.put(start, true);

        while (myQueue.size() > 0) {
            Node current = myQueue.poll();
            //current.distance++;

            values[current.value] = current.distance;

            for (int i = 0; i < m_graph[current.value].size(); i++) {
                int child = m_graph[current.value].get(i);

                if (! visited.containsKey(child)) {
                    visited.put(child, true);
                    myQueue.add(new Node(child, current.distance+1));
                }
            }
        }

        return values;
    }

    int distance(int start, int end) {
        if (start == end) {
            return 0;
        }

        Queue<Node> myQueue = new LinkedList<Node>();
        myQueue.add(new Node(start, 0));
        Map<Integer, Boolean> visited = new HashMap<Integer, Boolean>();

        while (myQueue.size() > 0) {
            Node current = myQueue.poll();
            //current.distance++;

            for (int i = 0; i < m_graph[current.value].size(); i++) {
                int child = m_graph[current.value].get(i);

                if (child == end) {
                    current.distance++;
                    return current.distance;
                }

                if (! visited.containsKey(child)) {
                    visited.put(child, true);
                    myQueue.add(new Node(child, current.distance+1));
                }
            }
        }
        return -1;
    }

    int minEnergy(int B, int E, int P, int N) {
        int[] BDistance = distance(1);
        int[] EDistance = distance(2);
        int[] PDistance = distance(N);

        //int[] BCompare = new int[N + 1];
        //for (int i = 0; i < N + 1; i++) {
        //    BCompare[i] = distance(1, i);
        //}

        // find solutions
        int smallestSize = Integer.MAX_VALUE;

        for (int i = 1; i < N + 1; i++) {
            int currentSize = (B*BDistance[i]) + (E*EDistance[i]) + (P*PDistance[i]);
            if (currentSize < smallestSize) {
                smallestSize = currentSize;
            }
        }

        return smallestSize;
    }


    public static void main (String args[]) throws IOException {

        try {
            // input
            BufferedReader br = new BufferedReader(new FileReader("piggyback.in"));
            Scanner scanner = new Scanner(br);

            String line = "";
            String[] firstLine = br.readLine().trim().split("\\s+");

            int B = Integer.parseInt(firstLine[0]);
            int E = Integer.parseInt(firstLine[1]);
            int P = Integer.parseInt(firstLine[2]);
            int N = Integer.parseInt(firstLine[3]);
            int M = Integer.parseInt(firstLine[4]);


            Piggyback mySolution = new Piggyback(N + 1);

            //while(scanner.hasNext()){
            for (int i = 0; i < M; i++) {
                line = scanner.nextLine();
                String[] arrItems = line.split(" ");

                mySolution.addEdge(Integer.parseInt(arrItems[0]), Integer.parseInt(arrItems[1]));
            }

            br.close();

            int returnInteger = mySolution.minEnergy(B, E, P, N);

            // output
            // int --> string = String.valueOf()

            BufferedWriter bufferedWriter = new BufferedWriter(new FileWriter("piggyback.out"));
            bufferedWriter.write(String.valueOf(returnInteger));
            bufferedWriter.close();
            ///
        }


        catch (FileNotFoundException e) {
            System.out.println("File not exists or insufficient rights");
            e.printStackTrace();
        }
        catch (IOException e) {
            System.out.println("An exception occured while reading the file");
            e.printStackTrace();
        }


    }
}

Problem 2: Marathon

Marathon

Unhappy with the poor health of his cows, Farmer John enrolls them in an assortment of different physical fitness activities. His prize cow Bessie is enrolled in a running class, where she is eventually expected to run a marathon through the downtown area of the city near Farmer John’s farm!

The marathon course consists of N checkpoints (3 <= N <= 500) to be visited in sequence, where checkpoint 1 is the starting location and checkpoint N is the finish. Bessie is supposed to visit all of these checkpoints one by one, but being the lazy cow she is, she decides that she will skip up to K checkpoints (K < N) in order to shorten her total journey. She cannot skip checkpoints 1 or N, however, since that would be too noticeable.

Please help Bessie find the minimum distance that she has to run if she can skip up to K checkpoints.

Since the course is set in a downtown area with a grid of streets, the distance between two checkpoints at locations (x1, y1) and (x2, y2) is given by |x1-x2| + |y1-y2|.

INPUT: (file marathon.in)

The first line gives the values of N and K.

The next N lines each contain two space-separated integers, x and y, representing a checkpoint (-1000 <= x <= 1000, -1000 <= y <= 1000). The checkpoints are given in the order that they must be visited. Note that the course might cross over itself several times, with several checkpoints occurring at the same physical location. When Bessie skips such a checkpoint, she only skips one instance of the checkpoint – she does not skip every checkpoint occurring at the same location.

SAMPLE INPUT:

5 2
0 0
8 3
1 1
10 -5
2 2

OUTPUT: (file marathon.out)

Output the minimum distance that Bessie can run by skipping up to K checkpoints. In the sample case shown here, skipping the checkpoints at (8, 3) and (10, -5) leads to the minimum total distance of 4.

SAMPLE OUTPUT:

4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
vector<vector<int>> dp;

int dist(pair<int, int> first, pair<int, int> second) {
    return abs(first.f - second.f) + abs(first.s - second.s);
}

int maxCheckpoints(int N, int K, vector<pair<int, int>> checkpoints) {
    // sum, row 1
    FOR(i, 1, N) {
        dp[i][0] = dp[i - 1][0] + dist(checkpoints[i], checkpoints[i - 1]);
    }

    // dp
    FOR(i, 1, N) {
        FOR(j, 1, K + 1) {

            dp[i][j] = 1<<30;

            if (i <= j) {
                // invalid, skip
                continue;
            }
            int x = min(i - 1, j);
            dbg(i, j, K, x);
            F0R(k, x + 1) {
                dp[i][j]  = min(dp[i - k - 1][j - k] + dist(checkpoints[i], checkpoints[i - k - 1]), dp[i][j]);
            }

        }
    }
    int ans = INT_MAX;
    F0R(i, min(K + 1, N-2)) {

        ans = min(ans, dp[N - 1][i]);

    }
    return ans;
}


int main() {
    ifstream cin ("marathon.in");
    ofstream cout ("marathon.out");

    int N, K;
    cin >> N >> K;

    dp.resize(N);
    F0R(i, N) {
        dp[i].resize(K + 1);
    }

    vector<pair<int, int>> checkpoints;
    checkpoints.resize(N);

    F0R(i, N) {
        cin >> checkpoints[i].f >> checkpoints[i].s;
    }

    cout << maxCheckpoints(N, K, checkpoints);
}

Problem 3: Cow Jog

Cow Jog

The cows are out exercising their hooves again! There are N cows jogging on an infinitely-long single-lane track (1 <= N <= 100,000). Each cow starts at a distinct position on the track, and some cows jog at different speeds.

With only one lane in the track, cows cannot pass each other. When a faster cow catches up to another cow, she has to slow down to avoid running into the other cow, becoming part of the same running group.

The cows will run for T minutes (1 <= T <= 1,000,000,000). Please help Farmer John determine how many groups will be left at this time. Two cows should be considered part of the same group if they are at the same position at the end of T minutes.

INPUT: (file cowjog.in)

The first line of input contains the two integers N and T.

The following N lines each contain the initial position and speed of a single cow. Position is a nonnegative integer and speed is a positive integer; both numbers are at most 1 billion. All cows start at distinct positions, and these will be given in increasing order in the input.

SAMPLE INPUT:

5 3
0 1
1 2
2 3
3 2
6 1

OUTPUT: (file cowjog.out)

A single integer indicating how many groups remain after T minutes.

SAMPLE OUTPUT:

3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import javax.xml.soap.Node;
import java.io.*;
import java.util.*;

class Cow implements Comparable<Cow> {
    float position;
    float speed;
    int id;
    Cow(int p, int s, int i) {
        position = p;
        speed = s;
        id = i;
    }
    @Override
    public int compareTo(Cow o) {
        return (this.position < o.position ? -1 :
                (this.position == o.position ? 0 : 1));
    }
}

public class CowJog {

    List<Cow> m_cows;

    CowJog() {
        m_cows = new ArrayList<Cow>();
    }

    void sortCow() {
        Collections.sort(m_cows);
    }

    void printCows() {
        for (int i = 0; i < m_cows.size(); i++) {
            System.out.printf("(%d, %d), ",(int) m_cows.get(i).position, (int) m_cows.get(i).speed);
        }
        System.out.println();
    }


    List<Cow> deepCopy(List<Cow> origin) {
        List<Cow> rL = new ArrayList<Cow>();

        for (int i = 0; i < origin.size(); i++) {
            rL.add(origin.get(i));
        }
        return rL;
    }

    Integer cowJog() {

        float worldTime = 0;
        boolean flag = true;
        List<Integer> mL = new ArrayList<Integer>();
        int dCount = 0;

        while (flag) {
            flag = false;
            float nextMeetTime = Float.MAX_VALUE;
            for (int i = m_cows.size() - 1; i > 0; i--) {
                //System.out.printf("P: %d, S: %d\n", m_cows.get(i).position, m_cows.get(i).speed);

                Cow one = m_cows.get(i);
                Cow two = m_cows.get(i - 1);

                if (one.speed < two.speed) {
                    float meetTime = (one.position - two.position)/(two.speed - one.speed);
                    if (meetTime < nextMeetTime) {
                        nextMeetTime = meetTime;
                    }

                    flag = true;
                }

            }

            if (! flag) {
                break;
            }
            // smallest meet time found

            // printCows();
            worldTime += nextMeetTime;
            List<Cow> deletedCows = new ArrayList<Cow>();

            // System.out.printf("World Time: %f\n", worldTime);

            // one round

            float lastPosition = 0;
            for (int i = m_cows.size() - 1; i >= 0; i--) {
                Cow currentCow = m_cows.get(i);
                float newPos = currentCow.position + (currentCow.speed * nextMeetTime);

                if (i != 0 && m_cows.get(i).position <= m_cows.get(i - 1).position) {
                    deletedCows.add(m_cows.get(i - 1));
                }

                m_cows.get(i).position = newPos;

            }

            for (int i = 0; i < deletedCows.size(); i++) {
                m_cows.remove(deletedCows.get(i));
            }

        }


        return m_cows.size();
    }

    public static void main(String[] args) throws IOException {
        BufferedReader br = new BufferedReader(new FileReader("cowjog.in"));
        PrintWriter pw = new PrintWriter(new BufferedWriter(new FileWriter("cowjog.out")));
        StringTokenizer st = new StringTokenizer(br.readLine());
        int n = Integer.parseInt(st.nextToken());

        CowJog cowJog = new CowJog();

        for(int i = 0; i < n; i++) {
            st = new StringTokenizer(br.readLine());
            int x = Integer.parseInt(st.nextToken());
            int y = Integer.parseInt(st.nextToken());
            Cow currentCow = new Cow(x, y, i);

            cowJog.m_cows.add(currentCow);
        }

        int ans = cowJog.cowJog();

        pw.println(ans);
        pw.close();
    }
}